
Combinatorial Optimization
Winter Term 2024/2025

Professor Dr. Jens Vygen
Matthias Kaul

Programming Exercise 2

Exercise P.2. Task: Implement approximation algorithms for Submodular
Function Maximization for the case of Exercise 11.3. You should imple-
ment both the algorithm presented in exercise 11.2, as well as the randomized
2-approximation algorithm presented in the lecture.

Usage: Your program should be called as follows:

program input_file

Input: The argument input_file is mandatory, i.e. your program should exit
with an error message if it is not present. The file input_file encodes the input
instance as follows: All lines beginning with a c are comments. Ignoring any
comment lines the first line has the format

p n m

where n = |F | and m = |D|. We implicitly identify the facilities F with {1, . . . , n}
and the clients D with {1, . . . , m}. The next line has the format

f c

representing the facility opening costs c.

The following n · m lines have the format

d i j x

representing that p(i, j) = x.

Output: Your program should compute a set X ⊆ F approximately maximizing

f(X) :=
∑
d∈D

max{0, max
x∈X

p(d, x)} − c · |X|.

Implement both the algorithm from Theorem 14.26 in the book and the derandom-
ization from Exercise 11.2 to solve this problem. Your program should ouput the
two solutions X1, X2 to the standard output on two separate lines, each containing
the ids of the facilities in Xi separated by spaces. It should output in the first line

Combinatorial Optimization
Winter Term 2024/2025

Professor Dr. Jens Vygen
Matthias Kaul

the set computed by the algorithm from Theorem 14.26, and on the second line
the one computed by the algorithm from exercise 11.2.

Programming conditions: Your program should be written in C, C++, or Python 3,
although the use of C++ is strongly encouraged. By default, your program will be
compiled using g++ 13.2.0 using C++20. Different compilers or compiler versions
are available upon request. Your program will be compiled using -pedantic -Wall
-Wextra -Werror, i.e., all warnings are enabled and each remaining warning will
lead to compilation failure. Program evaluation will be performed on Linux. The
standard library can be used as you wish. No other libraries are allowed.

Submission Format: Your submission should consist of a single archive file in the
.zip, .tar.gz or .tar.bz2 format, which contains all contents of your top level direc-
tory (but not the directory itself). For easier testing, your submission must contain
a bash script compile.sh in its top level directory, which builds the executable
(e.g. by directly calling the compiler or by executing some make command) when
called without any arguments.

Code evaluation: Running time in practice will also be evaluated, as well as the
elegance, cleanness and organization of your code. Make sure to add good docu-
mentation and give the variables, functions and types meaningful names that make
their role clear. Break your complicated functions into small simple ones, break
your program into a few units etc. Of course, your program should not trigger
undefined behavior. In particular, your program should be valgrind-clean, i.e. it
should not leak memory and should not perform invalid operations on memory.

Help: The website for the exercise class contains a set of test instances for testing
your code.

(14 points)

Exercise P.3. Discuss the results of your implementation. Which of the two
algorithms performs better in practice for the given instances? How much does
this depend on the order of the facilities, or on the random choices? Submit the
discussion of the results alongside the program itself as a PDF document.

(6 points)

Deadline: January 13th AoE, submissions should be sent by e-mail to mkaul@uni-
bonn.de. The websites for lecture and exercises can be found at:

http://www.or.uni-bonn.de/lectures/ws24/co_exercises_ws.html

mailto:mkaul@uni.bonn.de
mailto:mkaul@uni.bonn.de
http://www.or.uni-bonn.de/lectures/ws24/co_exercises_ws.html

