Graduate Seminar on Discrete Optimization Graph Partitioning

1. Approximating fractional multicommodity flow

L. Fleischer [2000]: Approximating fractional multicommodity flow independent of the number of commodities.

SIAM Journal on Discrete Mathematics, 2000, 13, 505–520 (preliminary version: FOCS 1999)

2. Multicommodity max-flow min-cut theorems and sparsest cuts

T. Leighton and S. Rao [1999]: Multicommodity Max-Flow Min-Cut Theorems and Their Use in Designing Approximation Algorithms: section 1, 2, 3.1: as far as needed for sparsest cuts.

Journal of the ACM, 1999, 46, 787-832 (FOCS 1988)

3. Approximation algorithms based on sparsest cuts

T. Leighton and S. Rao [1999]: Multicommodity Max-Flow Min-Cut Theorems and Their Use in Designing Approximation Algorithms: rest of the paper

4. Metric embedding and sparsest cuts

D. Shmoys [1997]: Cut Problems and Their Application to Divide-and-Conquer: section 5.3.3, 5.3.4: $O(\log n)$ -approximation for sparsest cut.

In: Approximation Algorithms for NP-hard Problems, (D.S. Hochbaum, ed.), 1997, 192-235

Based on: Y. Aumann and Y. Rabani: An $O(\log k)$ approximate min-cut max-flow theorem and approximation algorithm. SIAM Journal on Computing, 1998, 7, 291–301 and N. Linial, E. London, and Y. Rabinovich: The geometry of graphs and some of its algorithmic applications. Combinatorica, 1995, 15, 215–246

5. Applications to feedback arc sets and balanced cuts

D. Shmoys [1997]: Cut Problems and Their Application to Divide-and-Conquer: section 5.4, 5.5

Based on: P. Seymour: *Packing directed circuits fracionally*. Combinatorica, 1995, 15, 281–288 and

G. Even, J. Naor, S. Rao, and B. Schieber: *Divide-and conquer approximation algorithms via spreading metrics.* Proceedings of the Symposium on Foundations of Computer Science, 1995, 62–71

6. $O(\sqrt{\log n})$ -approximation for sparsest cut

S. Arora, S. Rao, and U. Vazirani [2009]: Expander Flows, Geometric Embeddings and Graph Partitioning: section 2, 6

Journal of the ACM, 2009, 56, article 5 (STOC 2004)

7. Finding well-represented sets in ℓ_2^2 -representations

S. Arora, S. Rao, and U. Vazirani [2009]: *Expander Flows, Geometric Embeddings and Graph Partitioning*: Proof of Theorem 1

8. Expander Flows

S. Arora, S. Rao, and U. Vazirani [2009]: *Expander Flows, Geometric Embeddings and Graph Partitioning*: section 7: Expander Flows

9. $O(\sqrt{\log n})$ approximation to sparsest cut in $\tilde{O}(n^2)$ time

S. Arora, E. Hazan, and S. Kale [2004]: $O(\sqrt{\log n})$ approximation to SPARSEST CUT in $\tilde{O}(n^2)$ time

Proceedings of the Symposium on Foundations of Computer Science, 2004, 238–247

10. Graph partitioning using single commodity flows

R. Khandekar, S. Rao, and U. Vazirani [2009]: Graph partitioning using single commodity flows

Journal of the ACM, 2009, 56, article 19 (STOC 2006)

11. Fast approximate graph partitioning algorithms

G. Even, J. Naor, S. Rao, and B. Schieber [1999]: Fast approximate graph partitioning algorithms: section 2, 3, 4

SIAM Journal on Computing, 1999, 28, 2187–2214 (SODA 1999)

12. Partitioning graphs into balanced components

R. Krauthgamer, J. Naor, and R. Schwartz [2009]: Partitioning graphs into balanced components

Proceedings of the Symposium on Discrete Algorithms, 2009, 942–949

13. $O(\log n)$ -approximation of the graph bisection problem

H. Räcke [2008]: Optimal Hierarchical Decompositions for Congestion Minimization in Networks

Proceedings of the Symposium on Theory of Computing, 2008, 385–390 and

J. Fakcharoenpol, S. Rao, and K. Talwar [2003]: A tight bound on approximating arbitrary metrics by tree metrics,

Journal of Computer and System Sciences, 2004, 69, 485–497 (STOC 2003)